top of page

Journal Publications (*corresponding author; #contribute equally)

2024

1. "Highly sensitive QEPAS sensor for sub-ppb N2O detection using a compact butterfly-packaged quantum cascade laser", M. Yang, Z. Wang*, H. Sun, M. Hu, P. T. Yeung, Q. Nie, S. Liu, N. Akikusa, and W. Ren*, Applied Physics B, 130(6) (2024). (link)

2. "A portable ppb-level formaldehyde sensor for real-time air quality monitoring", K. Duan, J. Wu*, T. Grabe, R. Lachmayer, and W. Ren*, IEEE Transactions on Instrumentation & Measurement, 73, 7001307 (2024). (link)

3. "Cavity-enhanced photoacoustic dual-comb spectroscopy", Z. Wang*#, Q. Nie#, H. Sun, Q. Wang*, S. Borri, P. D. Natale, and W. Ren*, Light: Science & Applications, 13, 11 (2024). (link)

4. "Quantum cascade laser absorption sensor for in-situ, real-time and sensitive measurement of high-temperature SO2 and SO3", K. Duan#, D. Wen#, Y. Ji*, K. Xu, Z. Huang, X. Zhang, S. Yao, and W. Ren*, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 309, 123864 (2024). (link)

5. "Time-averaged tomographic absorption spectroscopy for H2O diffusion in turbulent jet flow at room temperature", D. Shi, K.-P. Cheong*, T. Jiao, J. Wu, Y. Song, Y. Liu, and W. Ren, International Journal of Hydrogen Energy, 52, 133-146 (2024). (link)

6. "A multi-laser hybrid absorption sensor for simultaneous measurement of NH3, NO, and temperature in denitrification flue gas", S. Guo, J. Li, Y. Wei, Y. Yang, Z. Lu, X. Xing, W. Ren, and S. Yao*, Infrared Physics & Technology, 36, 105034 (2024). (link)

7. (特邀) 基于柔性空芯光纤的NO与NO2中红外吸收光谱检测", 温大新#, 高丽梅#, 段锟, 吉雍彬, 石艺尉*, 任伟*, 《激光与光电子学进展》, 61 (3), 0306003 (2024). (link)

8. "A theoretical and experimental study of 2-ethylfuran + OH reaction", L. Fu, D. Liu, Z. Zhang, S. Wang, Y. Zhang, H. Ning*, W. Ren*, and A. Farooq, Combustion and Flame, 261, 113321 (2024). (link)

9. "On-chip photothermal gas sensor based on a lithium niobate rib waveguide", Y. Yan#, H. Feng#, C. Wang*, and W. Ren*, Sensors and Actuators B, 135392 (2024). (link)

2023

1. "Mid-infrared optical modulator enabled by photothermal effect", Z. Wang and W. Ren*, Light: Science & Applications, 12, 7 (2023). (link)   

2. "Mid-infrared absorption spectroscopy of ethylene at 10.5 µm using a chalcogenide hollow-core antiresonant fiber", M. Hu, A. Ventura, J. Hayashi, F. Poletti, and W. Ren*, Optics & Laser Technology, 158, 108932 (2023). (link)

3. "Smoldering peat fire detection by time-resolved measurements of transient CO2 and CH4 emissions using a novel dual-gas optical sensor", M Raza#, Y. Chen#, J. Trapp, H. Sun, X. Huang*, and W. Ren*, Fuel, 334, 126750 (2023). (link)

4. "Mid-infrared fiber-coupled laser absorption sensor for simultaneous NH3 and NO monitoring in flue gases", K. Duan, Y. Ji*, D. Wen, Z. Lu, K. Xu, and W. Ren*, Sensors and Actuators B, 374, 132805 (2023). (link)

5. "Parts-per-billion-level detection of hydrogen sulfide based on doubly resonant photoacoustic spectroscopy with line-locking", H. Zhang, Z. Wang, Q. Wang*, S. Borri, I. Galli, A. Sampaolo, P. Patimisco, V. L. Spagnolo, P. D. Natale, and W. Ren, Photoacoustics, 29, 100436 (2023). (link)

6. "Super tiny quartz-tuning-fork-based light-induced thermoelastic spectroscopy sensing", S. Qiao, P. Ma, V. Tsepelin, G. Han, J. Liang, W. Ren, H. Zheng, and Y. Ma*, Optics Letters, 48, 419-422 (2023). (link)

7. "On the measurement of local vapor concentration around sessile water droplet with high spatiotemporal resolution", J. Wu*, H. Zhang, M. Hu, Q. Wang*, Z. Wang, H. Wang, R. Chen, W. Ren*, X. Zhu, and Q. Liao, International Journal of Multiphase Flow, 161, 104397 (2023). (link)

8. "Optical Emission from Triboelectric Gas Discharge toward Self-Powered Gas Sensing", J. Fu, Z. Song, G. Xu, H. Wang, X. Li, J. Wang, W. Ding, W. Ren, L. M. Lei, Y. Zi*, Advanced Optical Materials, doi.org/10.1002/adom.202202697 (2023). (link)

9. "Linear Scalability of Dense-pattern Herriott-type Multipass Cell Design", J. Wu*, T. Grabe*, J.-L. Götz, J. Trapp, A. S. de Souza,  T. Biermann,  A. Wolf, P.-P. Ley, K. Duan, R. Lachmayer*, and W. Ren, Applied Physics B, 129, 87 (2023). (link)

10. "Application-inspired additive manufacturing of Raman optics", T. Grabe*, T. Biermann, A. Wolf, J. Al-Nuwaider, H. Krauss, J. August, W. Yu, J. B. Heinz, M. Bayerl, K. Xu, Q. Wang, J. Wu, B. Roth, W. Ren, and R. Lachmayer, Optics & Laser Technology, 165, 109574 (2023). (link)

11. "Mid-infrared swept cavity-enhanced photoacoustic spectroscopy using a quartz tuning fork", Q. Nie, Z. Wang*, S. Borri, P. D. Natale, and W. Ren, Applied Physics Letters, 123, 054102 (2023). (link)

12. "Observation of strong photorefractive-like effect in silica micro-fibers", Y. Yan, M. Hu, P. Sun, K. Duan, Q. Wang, and W. Ren*, AIP Advances, 13, 095106 (2023). (link)

2022

1. "Dual-comb photothermal spectroscopy", Q. Wang*, Z. Wang*, H. Zhang, S. Jiang, Y. Wang, W. Jin, and W. Ren*, Nature Communications, 13, 2181 (2022). (link

2. "Trace gas detection in a hollow-core antiresonant fiber with heterodyne phase-sensitive dispersion spectroscopy", M. Hu, A. Ventura, J. Hayashi, F. Poletti, S. Yao, and W. Ren*, Sensors and Actuators B, 363, 131774 (2022). (link)

3. (Invited Review) "Laser sensors for energy systems and process industries: Perspectives and directions", A. Farooq*, A. Alquaity, M. Raza, E. F. Nasir, S. Yao, and W. Ren, Progress in Energy and Combustion Science, 91, 10097 (2022). (link)

4. "Development of an infrared laser absorption sensor for non-intrusive gas temperature measurements", K. Duan, D.-X. Wen, Y. Wang, L. Ma*, K.-P. Cheong, C. Yuan, and W. Ren, Energetic Materials Frontiers, 3(1), 10-17 (2022). (link)

5. "Mid-infrared CO2 sensor with blended absorption features for non-uniform laminar premixed flames", Z. Wang, W. Wang, L. Ma, P. Fu, W. Ren, and X. Chao*,  Applied Physics B, 128, 31 (2022). (link)

6. "Hybrid constraint multi-line absorption spectroscopy for non-uniform thermochemical measurements in axisymmetric laminar and jet flames", L. Ma*, K.-P. Cheong*, K. Duan, C. Yuan, and W. Ren, Optics and Lasers in Engineering, 154, 107014 (2022). (link)

7. "Wavelength-modulation dispersion spectroscopy of NO with heterodyne phase-sensitive detection", M. Hu and W. Ren*, Optics Letters, 47(11), 2899-2902 (2022). (link)

8. "Simultaneous methane and acetylene detection using frequency-division multiplexed laser absorption", M. Raza, K. Xu, Z. Lu, and W. Ren*, Optics & Laser Technology, 154, 108285 (2022). (link)

9. "Measurement of temperature-dependent line parameters of ammonia transitions near 1103 cm-1", K. Duan, Y. Ji*, Z. Lu, and W. Ren*, Journal of Quantitative Spectroscopy & Radiative Transfer, 288, 108269 (2022). (link)

10. "A CGA-ONIOM-DFT framework for accurate and efficient determination of thermodynamics and Kinetics: Case study of cyclopentane reaction with hydroxyl radical", J. Wu*, H. Ning, and W. Ren*, Chemical Physics Letters, 801, 139714 (2022). (link)

11. "High-temperature ammonia detection using heterodyne phase-sensitive dispersion spectroscopy at 9.06 μm", K. Duan, Y. Ji, M. Hu, Z. Lu, S. Yao, and W. Ren*, Fuel, 325, 124852 (2022). (link)

12. "Photothermal multi-species detection in a hollow-core fiber with frequency-division multiplexing", Z. Wang, H. Zhang, J. Wang, S. Jiang, S. Gao, Y. Wang, W. Jin, Q. Wang*, and W. Ren, Sensors and Actuators B, 369, 132333 (2022). (link)

13. "Doubly resonant sub-ppt photoacoustic gas detection with eight decades dynamic range", Z. Wang, Q. Wang*, H. Zhang, S. Borri, I. Galli, A. Sampaolo, P. Patimisco, V. L. Spagnolo, P. D. Natale, and W. Ren*, Photoacoustics, 27, 100387 (2022). (link)

14. "A coherent-averaged dual-comb spectrometer based on environment-shared fiber lasers and digital error correction", H. Yu, Y. Li, Q. Ma, Q. Zhou, X. Li, W. Ren, and K. Ni*, Optics & Laser Technology, 156, 108498 (2022). (link)

15. "Mid-infrared photothermal gas sensor enabled by core-cladding mode interference in a hollow-core fiber", M. Hu, A. Ventura, J. Hayashi, F. Poletti, and W. Ren*, Journal of Lightwave Technology, 40(19), 6568 - 6575 (2022). (link)

16. "Mid-infrared absorption spectroscopic sensor for simultaneous and in-situ measurements of ammonia, water and temperature", Y. Ji, K. Duan, Z. Lu, and W. Ren*, Sensors and Actuators B, 371, 132574 (2022). (link)

17. "Tomographic Absorption Spectroscopy for H2O Transport in a Laminar Jet with Inverse Concentration Gradient", K.-P. Cheong*, D. Shi, S. Liu, J. Wu*, K. Duan, Y. Song, and W. Ren, Sensors, 22(16), 5939 (2022). (link)

18. "Transient tracer gas measurements: Development and evaluation of a fast-response SF6 measuring system based on quartz-enhanced photoacoustic spectroscopy", L. Fu, M. Yang, J. Niu, W. Ren*, and R. You*, Indoor Air, 32(1), e12952 (2022). (link)

19. "Correcting the light extinction effect of fly ash particles on the measurement of NO by TDLAS", S. Guo, Y. Yang, G. Shao, Z. Li, W. Ren, J. Mo, Z. Lu, and S. Yao*, Frontiers in Physics, accepted (2022). (link)

20. "Photothermal gas detection with a dithered low-finesse fiber-optic Fabry-Pérot interferometer", C. Yao*, S. Jiang, S. Gao, Y. Wang, W. Jin, and W. Ren*, Journal of Lightwave Technology, 41(2), 745-751 (2022). (link)

21. "Mid-infrared frequency modulation spectroscopy of NO detection in a hollow-core antiresonant fiber", M. Hu, A. Ventura, J. Hayashi, F. Poletti, and W. Ren*, Photonics, 9(12), 935 (2022). (link)

2021

1. "Shock tube measurement of NO time-histories in nitromethane pyrolysis using a quantum cascade laser at 5.26 μm", Y. Shang, Z. Wang, L. Ma, J. Shi, H. Ning*, W. Ren*, and S. Luo, Proceedings of the Combustion Institute, 38(1), 1745-1752 (2021). (link)

2. "Dual-comb spectroscopy for laminar premixed flames with a free-running fiber laser", K. Xu, L. Ma, J. Chen, X. Zhao, Q. Wang, R. Kan, Z. Zheng, and W. Ren*, Combustion Science and Technology, 194(12), 2523-2538 (2021). (link)

3. "On the quantification of boundary layer effects on flame temperature measurements using line-of-sight absorption spectroscopy", L. Ma, K.-P. Cheong*, M. Yang, C. Yuan, and W. Ren*, Combustion Science and Technology, 194(16), 3259-3276 (2021). (link)

4. "Tellurite hollow-core antiresonant fiber-coupled quantum cascade laser absorption spectroscopy", C. Yao#, M. Hu#, A. Ventura, J. G. Hayashi*, F. Poletti, and W. Ren*, Journal of Lightwave Technology, 39(17), 5662-5668 (2021). (link)

5. "High-temperature dual-species (CO/NH3) detection using calibration-free scanned-wavelength-modulation spectroscopy at 2.3 μm", M. Raza, L. Ma*, S. Yao, L. Chen, and W. Ren*, Fuel, 305, 121591 (2021). (link)

6. "Tunable diode laser-based two-line thermometry: a noncontact thermometer for active body temperature measurement", K. Duan, L. Ma, Y. Yi, and W. Ren*, Applied Optics, 60(23), 7036-7042 (2021). (link)

7. "Heterodyne interferometric photothermal spectroscopy for gas detection in a hollow-core fiber", C. Yao, S. Gao, Y. Wang, W. Jin, and W. Ren*, Sensors and Actuators B, 346, 130528 (2021). (link)

8. "Multispectral infrared absorption spectroscopy for quantitative temperature measurements in axisymmetric laminar premixed sooting flames", L. Ma*, K. Duan, K.-P. Cheong*, C. Yuan, and W. Ren, Case Studies in Thermal Engineering, 28, 101575 (2021). (link)

9. "Accurate temperature prediction with small absorption spectral data enabled by transfer machine learning", Y. Yi, K. Duan, K. Ni, R. Li, and W. Ren*, Optics Express, 29(25), 40699-40709 (2021). (link)

10. "Mid-infrared cavity-enhanced absorption sensor for ppb-level N2O detection using an injection-current-modulated quantum cascade laser", M. Yang, Z. Wang, Q. Nie, K. Ni, and W. Ren*, Optics Express, 29(25), 41634-41642 (2021). (link)

2020

1. "Sub-ppm CO detection in a sub-meter-long hollow-core negative curvature fiber using absorption spectroscopy at 2.3 µm", C. Yao, L. Xiao, S. Gao, Y. Wang, P. Wang, R. Kan, W. Jin, and W. Ren*, Sensors and Actuators B, 305, 127238 (2020). (link)

2. "Exploring the pyrolysis chemistry of prototype aromatic ester phenyl formate: Reaction pathways, thermodynamics and kinetics", H. Ning, J. Wu, L. Ma, and W. Ren*, Combustion and Flame, 211, 337-346 (2020). (link)

3. "An improved study of the uniformity of laminar premixed flames using laser absorption spectroscopy and CFD simulation", L. Ma, K.-P. Cheong, H. Ning, and W. Ren*, Experimental Thermal and Fluid Science, 112, 110013 (2020). (link)

4. "Multipass-assisted dual-comb gas sensor for multi-species detection using a free-running fiber laser", K. Xu, X. Zhao, Z. Wang, J. Chen, T. Li, Z. Zheng*, and W. Ren*, Applied Physics B, 126, 39 (2020). (link)

5. "Anharmonic kinetics of the cyclopentane reaction with hydroxyl radical", J. Wu, L. Gao, W. Ren*, D. Truhlar*, Chemical Science - The Royal Society of Chemistry, 11, 2511-2523 (2020). (link)

6. "Active modulation of intracavity laser intensity with Pound-Drever-Hall locking for photoacoustic spectroscopy", Z. Wang, H. W, Y. Li, R. Kan, and W. Ren*, Optics Letters, 45(5), 1148-1151 (2020). (link)

7. "Direct dynamics of a large complex hydrocarbon reaction system: The reaction of OH with exo-Tricyclodecane (the main component of Jet Propellant-10)", J. Wu, L. G. Gao, H. Ning, W. Ren*, and D. G. Truhlar*, Combustion and Flame, 216, 82-91 (2020). (link)

8. (VIP-Very Important Paper) "Water catalysis of the reaction of methanol with OH radical in the atmosphere is negligible", J. Wu, L. G. Gao, Z. Varga, X. Xu*, W. Ren*, and D. G. Truhlar*, Angewandte Chemie - International Edition, 59, 10826-10830 (2020). (link)

9. "Rapid field measurement of ventilation rate using a quartz-enhanced photoacoustic SF6 gas sensor", Z. Wang#, M. Yang#, L. Fu, C. Chen, R. You*, and W. Ren*, Measurement Science and Technology, 31, 085105 (2020). (link)

10. "Silica hollow-core negative curvature fibers enable ultrasensitive mid-infrared absorption spectroscopy", C. Yao, S. Gao, Y. Wang, P. Wang, W. Jin, and W. Ren*, Journal of Lightwave Technology, 38(7), 2067-2072 (2020). (link)

11. "MHz-rate scanned-wavelength direct absorption spectroscopy using a distributed feedback diode laser at 2.3 µm", M. Raza, L. Ma, C. Yao, M. Yang, Z. Wang, Q. Wang, R. Kan, and W. Ren*, Optics and Laser Technology, 130, 106344 (2020). (link)

12. "MIR-pump NIR-probe fiber-optic photothermal spectroscopy with background-free first harmonic detection", C. Yao, S. Gao, Y. Wang, P. Wang, W. Jin, and W. Ren*, IEEE Sensors Journal, 20(21), 12709 (2020). (link)

13. "Theoretical and experimental study of heterodyne phase-sensitive dispersion spectroscopy with an injection-current-modulated quantum cascade laser", Z. Wang, K.-P. Cheong, M. Li, Q. Wang, and W. Ren*, Sensors, 20(21), 6176 (2020). (link)

2019

1. "Cascaded group-additivity ONIOM: A new method to approach CCSD(T)/CBS energies of large aliphatic hydrocarbons", J. Wu, H. Ning, L. Ma, P. Zhang, and W. Ren*, Combustion and Flame, 201, 31-43 (2019). (link)

2. "Mid-infrared heterodyne phase-sensitive dispersion spectroscopy in flame measurements", L. Ma, Z. Wang, K.-P. Cheong, H. Ning, and W. Ren*, Proceedings of the Combustion Institute, 37(2), 1329-1336 (2019). (link)

3. "Stability and emission characteristics of nonpremixed MILD combustion from a parallel-jet burner in a cylindrical furnace", K.-P. Cheong, G. Wang, B. Wang, R. Zhu, W. Ren, J. Mi*, Energy, 170, 1181-1190 (2019). (link

4. "TDLAS Monitoring of Carbon Dioxide with Temperature Compensation in Power Plant Exhausts", X. Zhu, S. Yao*, W. Ren, Z. Lu, and Z. Li, Applied Sciences, 9(3), 442 (2019). (link)

5. "Ultra-sensitive photoacoustic detection in a high-finesse cavity with Pound-Drever-Hall locking", Z. Wang, Q. Wang, W. Zhang, H. Wei, Y. Li, and W. Ren*, Optics Letters, 44(8), 1924-1927 (2019). (link)

6. "Accurate entropy calculation for large flexible hydrocarbons using a multi-structural 2-dimensional torsion method", J. Wu, H. Ning, X. Xu, and W. Ren*, Physical Chemistry Chemical Physics, 21, 10003-10010 (2019). (link)

7. "Kinetic mechanism for modeling the temperature effect on PAH formation in the pyrolysis of acetylene", H. Tao, H.-Y. Wang, W. Ren, and K. C. Lin*, Fuel, 255, 115796 (2019). (link)

8. "Photothermal CO detection in a hollow-core negative curvature fiber", C. Yao, Q. Wang, Y. Lin, W. Jin, L. Xiao, S. Gao, Y. Wang, P. Wang, and W. Ren*, Optics Letters, 44(16), 4048-4051 (2019). (link)

9. "Time-resolved characterization of non-thermal plasma-assisted photocatalytic removal of nitric oxide", M. Yang, K. Liu, L. Ma, K.-P. Cheong, Z. Wang, W. Ho, and W. Ren*, Journal of Physics D, 53(1), 01LT02 (2019). (link)

2018

1. "Characterization of temperature and soot volume fraction in laminar premixed flames: laser absorption/extinction measurement and 2D CFD modeling", L. Ma, H. Ning, J. Wu, K.-P. Cheong, and W. Ren*, Energy & Fuels, 32(12), 12962-12970 (2018). (link)

2. "Influence of line pair selection on flame tomography using infrared absorption spectroscopy", K.-P. Cheong, L. Ma, Z. Wang, and W. Ren*, Applied Spectroscopy, 73(5), 529-539 (2018). (link)

3. (HOT Articles)"Pressure-dependent kinetics of methyl formate reaction with OH at combustion, atmospheric and interstellar temperatures", J. Wu, H. Ning, L. Ma, and W. Ren*, Physical Chemistry Chemical Physics, 20(41), 26190-26199 (2018). (link

4. "Interband cascade laser absorption sensor for real-time monitoring of formaldehyde filtration by a nanofiber membrane", C. Yao, Z. Wang, Q. Wang, Y. Bian, C. Chen, L. Zhang, and W. Ren*, Applied Optics, 57(27), 8005-8010 (2018). (link)

5. (Invited review) "Recent Advances of Power-Enhanced Photoacoustic Spectroscopy for Gas Sensing", Q. Wang, K. Xu, C. Yao, Z. Wang, J. Chang, and W. Ren*, 中国激光, 45(9), 911008 (2018). (link)

6. “Premixed MILD Combustion of Propane in a Cylindrical Furnace with a Single Jet Burner: Combustion and Emission Characteristics”, KP Cheong, G Wang, J Mi, B Wang, R Zhu, W Ren, Energy & Fuels, 32 (8), 8817–8829 (2018). (link)

7. "Standoff detection of VOCs using external cavity quantum cascade laser spectroscopy", N. Liu, S. Zhou, L. Zhang, B. Yu, H. Fischer, W. Ren, J. Li,  Laser Physics Letters, 15 (2018). (link)

8. "Metal-Organic Framework-Based Nanofiber Filters for Effective Indoor Air Quality Control", Y. Bian, R. Wang, S. Wang, C. Yao, W. Ren, C. Chen, L. Zhang, Journal of Materials Chemistry A, 6, 15807-15814 (2018). (link)

9. "A theoretical and shock tube kinetic study on hydrogen abstraction from phenyl formate", H. Ning, D. Liu, J. Wu, L. Ma, W. Ren*, and A. Farooq, Physical Chemistry Chemical Physics, 20, 21280-21285 (2018). (link)

10. "Temperature and H2O sensing in laminar premixed flames using mid-infrared heterodyne phase-sensitive dispersion spectroscopy", L. Ma, Z. Wang, K.-P. Cheong, H. Ning, and W. Ren*, Applied Physics B, 124:117 (2018). (link)

11. "Fiber-ring laser intracavity QEPAS gas sensor using a 7.2 kHz quartz tuning fork", Q. Wang, Z. Wang, W. Ren*, P. Patimisco, A. Sampaolo, and V. Spagnolo, Sensors and Actuators B, 268, 512-518 (2018).(link)

12. "Accurate Prediction of Bond Dissociation Energies of Large n-Alkanes Using ONIOM-CCSD(T)/CBS Methods", J. Wu, H. Ning, L. Ma, W. Ren*, Chemical Physics Letters, 699, 139-145 (2018). (link)

13. "In situ flame temperature measurements using a mid-infrared two-line H2O laser-absorption thermometry", L. Ma, H. Ning, J. Wu, and W. Ren*, Combustion Science and Technology, 190(3), 392-407 (2018). (link)

2017

1. "A mid-infrared fiber-coupled QEPAS nitric oxide sensor for real-time engine exhaust monitoring", C. Shi, D. Wang, Z. Wang, L. Ma, Q. Wang, K. Xu, S.-C. Chen, and W. Ren*, IEEE Sensors Journal, 17(22), 7418-7424 (2017). (link)

2. "Mid-infrared fiber-optic photothermal interferometry", Z. Li, Z. Wang, F. Yang, W. Jin, and W. Ren*, Optics Letters, 42(18), 3718-3721 (2017). (link)

3. "Theoretical and experimental investigation of fiber-ring laser intracavity photoacoustic spectroscopy (FLI-PAS) for acetylene detection", Q. Wang, Z. Wang, and W. Ren*, Journal of Lightwave Technology, 35(20), 4519-4525 (2017). (link)

4. "Combined Ab Initio, Kinetic Modeling and Shock Tube Study of the Thermal Decomposition of Ethyl Formate", H. Ning, J. Wu, L. Ma, W. Ren*, D. F. Davidson, and R. K. Hanson, The Journal of Physical Chemistry A, 121(35), 6568-6579 (2017). (link)

5. "Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate", J. Wu, F. Khaled, H. Ning, L. Ma, A. Farooq, and W. Ren*, The Journal of Physical Chemistry A, 121(33), 6304-6313 (2017). (link)

6. "Chemical kinetic modeling and shock tube study of methyl propanoate decomposition", H. Ning, J. Wu, L. Ma, W. Ren*, D. F. Davidson, and R. K. Hanson, Combustion and Flame, 184, 30-40 (2017). (link)

7. "Mercury Telluride Quantum Dot Based Phototransistor Enabling High Sensitivity Room Temperature Photodetection at 2000 Nanometers", M. Chen, H. Lu, N.M. Abdelazim, Y. Zhu, Z. Wang, W. Ren, S.V. Kershaw*, A.L. Rogach, and N. Zhao*, ACS Nano, 11(6), 5614-5622 (2017). (link)

8. "Fiber ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing", Q. Wang, Z. Wang, J. Chang, and W. Ren*, Optics Letters, 42(11), 2114-2117 (2017). (link)

9. "Wavelength-stabilization-based photoacoustic spectroscopy for methane detection", Q. Wang, Z. Wang, and W. Ren*, Measurement Science and Technology, 28(6), (2017). (link)

10. "Improved evanescent-wave quartz-enhanced photoacoustic CO sensor using an optical fiber taper", Z. Li, Z. Wang, Y. Qi, W. Jin, and W. Ren*, Sensors and Actuators B, 248, 1023-1028 (2017). (link)

11. "A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser", Z. Wang, Q. Wang, J. Y.-L. Ching, J. C.-Y. Wu, G. Zhang, and W. Ren*, Sensors and Actuators B, 246, 710-715 (2017). (link)

12. "Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy", L. Ma, L. Y. Lau, and W. Ren*, Applied Physics B, 123:83 (2017). (link)

13. "Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) detection of the v7 band of ethylene at low pressure with CO2 interference analysis", Z. Wang, J. Geng, and W. Ren*, Applied Spectroscopy, 71(8), 1834-1841 (2017). (link)

14. "Pyrolysis and oxidation of methyl acetate in a shock tube: a multi-species time-history study", W. Ren*, K.-Y. Lam, D. F. Davidson, R. K. Hanson, and X. Yang, Proceedings of the Combustion Institute, 36(1), 255-264 (2017). (link)

2016 

1. "Mid-infrared multimode fiber coupled quantum cascade laser for off-beam quartz-enhanced photoacoustic detection", Z. Li, C. Shi, and W. Ren*, Optics Letters, 41 (17), 4095-4098 (2016). (link)

2. "Optical fiber tip-based quartz-enhanced photoacoustic sensor for trace gas detection", Z. Li, Z. Wang, C. Wang, and W. Ren*, Applied Physics B, 122 (2016). (link)

3. "Quartz-enhanced photoacoustic detection of ethylene using a 10.5 μm quantum cascade laser", Z. Wang, Z. Li, and W. Ren*, Optics Express, 24, 4143-4154 (2016). (link)

2015

1. "Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm", W. Ren*, L. Luo, F. K. Tittel, Sensors and Actuators B, 221, 1062-1068 (2015). (link)

bottom of page